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The research on proposing various variants of Particle Swarm Optimization 
Technique is continued for last several decades. Efforts are being made to 
develop a most efficient algorithm. In this paper a newly developed Hybrid 
Particle Swarm Optimization Algorithm. (It will be known as PARIPSO) has 
been proposed. This algorithm has been constructed by taking contribution 
of gbest as 65% and contribution of pbest as 35% which is novel philosophy 
to update velocity equation. The proposed algorithm has been tested on 
several benchmark problems. The results thus obtained have been compared 
with those obtained using Standard Particle Swarm Optimization (SPSO) and 
Mean Particle Swarm Optimization (MPSO). On the basis of results obtained 
it is concluded that the proposed algorithm performs better than SPSO and 
MPSO in most of the cases in the terms of efficiency, time computation, 
reliability, accuracy and stability. 
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1. Introduction

*Particle Swarm Optimization (PSO) was
developed by Kennedy and Eberhart (1995) and 
Kennedy et al. (2001), based on the swarm behavior 
such as fish and bird schooling in nature. The 
Particle Swarm Optimization algorithm is comprised 
of a collection of particles that move around the 
search space influenced by their own best past 
location and the best past location of the whole 
swarm or a close neighbor. In each iteration a 
particle’s velocity is updated using (Eq. 1): 

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) + (𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘))) +

(𝑐2 × 𝑟𝑎𝑛𝑑( ) × (𝑝𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘)))   (1) 

where 𝑣𝑖(𝑘 + 1)is the new velocity for the 𝑖𝑡ℎ 
particle, 𝑐1 and 𝑐2 are the weighting coefficients for 
the personal best and global best positions 
respectively, 𝑝𝑖(𝑘) is the 𝑖𝑡ℎ particle’s position at time 
k, 𝑝𝑖

𝑏𝑒𝑠𝑡 is the 𝑖𝑡ℎ particle’s best known position, and
𝑝𝑔𝑏𝑒𝑠𝑡 is the best position known to the swarm.  

The rand () function generate a uniformly 
random numbers in [0, 1]. Variants on this update 
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equation consider best positions within a particles 
local neighborhood at time t.  

A particle’s position is updated using (Eq. 2): 

𝑝𝑖(𝑘 + 1) = 𝑝𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)  (2) 

Particle, 𝑝𝑖(𝑘) is the 𝑖𝑡ℎ particle’s position at time 
k and 𝑣𝑖(𝑘)is the old velocity for the 𝑖𝑡ℎ particle. 

Shi and Eberhart (1998) have introduced the 
inertia weight in this theory. An Inertia weight is 
related with the speed of last iteration, and the 
velocity update equation for the change of the speed 
is the following (Eq. 3): 

𝑣𝑖(𝑘 + 1) = 𝑤 × 𝑣𝑖(𝑘) + (𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝑖
𝑏𝑒𝑠𝑡 −

𝑝𝑖(𝑘))) + (𝑐2 × 𝑟𝑎𝑛𝑑() × (𝑝𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘)))        (3) 

Clerc (1999) introduced the concept of 
construction factor. The following is the formula for 
its position and speed changing (Eq. 4): 

𝑣𝑖(𝑘 + 1) = 𝑥 × (𝑤 × 𝑣𝑖(𝑘) + (𝑐1 × 𝑟𝑎𝑛𝑑() ×

(𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘))) + (𝑐2 × 𝑟𝑎𝑛𝑑() × (𝑝𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘)))      (4) 

𝑥 =
2

|2−∅−√∅2−4∅|
is called the contraction factor, 

∅ = 𝑐1 + 𝑐2 > 4. Generally, ϕ is equal to 4.1, so 𝑥 =
0.729. The experimental results of equation (4) as 
compared with the PSO algorithm with inertia 
weights, the convergence speed in the PSO algorithm 
with the convergence agent is much quicker. In fact, 
when the proper values of w, 𝑐1and 𝑐2 is decided, the 
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two calculation methods are identical. So, the PSO 
algorithm with convergence agent can be regarded 
as a special example of the particle swarm 
optimization algorithm with inertia weights. 
Meanwhile, the properly selected parameters in the 
algorithms can improve the function of the methods. 

1.1. Literature review 

Several interesting variation of PSO algorithm 
have recently been proposed by various researcher. 

Multi-Swarm Cooperative Particle Swarm 
Optimizer is developed by Niu et al. (2007). MCPSO 
is based on a master–slave model, in which a 
population consists of one master swarm and several 
slave swarms. The slave swarms execute a single 
PSO or its variants independently to maintain the 
diversity of particles, while the master swarm 
evolves based on its own knowledge and also the 
knowledge of the slave swarms. According to the co-
evolutionary relationship between master swarm 
and slave swarms, two versions of MCPSO are 
proposed, namely the competitive version of MCPSO 
(COM-MCPSO) and the collaborative version of 
MCPSO (COL-MCPSO), where the master swarm 
enhances its particles based on an antagonistic 
scenario or a synergistic scenario, respectively. The 
performance of the proposed algorithms has been 
compared with the standard PSO (SPSO) and its 
variants to demonstrate the superiority of MCPSO. 

Quadratic Interpolation Particle Swarm 
Optimization is developed by Pant et al. (2007). The 
QIPSO algorithm makes use of a multiparent, 
quadratic crossover/reproduction operator defined 
in the BPSO algorithm. The author has compared the 
results with Basic Particle Swarm Optimization. 

Mean particle swarm optimization for function 
optimization has been introduced by Deep and 
Bansal (2009). The method is based on a novel 
philosophy by modifying the velocity update 
equation. This is done by replacing two terms of 
original velocity update equation by two new terms 
based on the linear combination of pbest and gbest. 
Its performance is compared with the standard PSO 
(SPSO) by testing on benchmark problems. Based on 
the numerical and graphical analyses of results it is 
shown that the MeanPSO outperforms the SPSO, in 
terms of efficiency, reliability, accuracy and stability. 

Competitive Learning Model in introduced by 
Murugesan and Palaniswami (2012). The 
hybridization of this Algorithm using Swarm 
Intelligent techniques further improves the 
efficiency of the Algorithm. Various works on the 
hybridization of Particle Swarm Optimization (PSO) 
with Simple Competitive Learning (SCL) have been 
proposed and are found to be efficient in Image 
Segmentation. 

A Modified Hybrid Particle Swarm Optimization 
(MHPSO) algorithm has been developed by Said 
Labed et al. (2011). This approach is combined by 
some principles of Particle Swarm Optimization 
(PSO), the Crossover operation of the Genetic 
Algorithm and 2-opt improvement heuristic. The 

main feature of this approach is that it allows 
avoiding a major problem of met heuristics by the 
parameters setting.  

A New Disc-Based Particle Swarm Optimization is 
developed by Yadav and Deep (2012). With the help 
of this approach authors have solved complex 
optimization problems. The reliability of the 
algorithms is validated statistically on several 
benchmark problems and also compared with the 
existing versions of PSO. 

One half global best position particle swarm 
optimization has been introduced by Singh and Singh 
(2011). The performance of this algorithm has been 
tested through numerical and graphical results. The 
results obtained are compared with the standard 
PSO (SPSO) for scalable and non-scalable problems. 
The results indicate that new approach is better as 
comparison to SPSO in the terms of efficiency, 
reliability, accuracy and stability. 

Personal best position particle swarm 
optimization has been introduced by Singh and Singh 
(2012). In the proposed approach a novel philosophy 
of modifying the velocity update equation of 
Standard Particle Swarm Optimization approach has 
been used. The modification has been done by 
vanishing the gbest term in the velocity update 
equation of SPSO and thus relying on pbest only. The 
performance of the proposed algorithm (Personal 
Best Position Particle Swarm Optimization, PBPPSO) 
has been tested on several benchmark problems. It is 
concluded that the PBPPSO performs better than 
SPSO in terms of accuracy and quality of solution. 

A new version of particle swarm optimization 
algorithm has been developed by Singh et al. (2012). 
The algorithm has been developed by combining two 
different approaches of PSO i.e., Standard Particle 
Swarm Optimization and Mean Particle Swarm 
Optimization. Numerical experiments for scalable 
and non-scalable well known test problems have 
shown the superiority of newly proposed Hybrid 
Particle Swarm Optimization (HPSO) approach, 
compared to the classical SPSO algorithm in terms of 
convergence, speed and quality of obtained 
solutions. 

A Modified PSO algorithm has also been 
developed by Ghatei et al. (2012). In this approach, 
the range for achieved answers is defined that is the 
same parameter used in the GDA called “water level”. 
Amount of this range reduces or increases regarding 
to algorithm’s property being used in terms of 
minimum or maximum during the time. This 
algorithm has been tested on some standard 
functions and its performance has been compared 
with standard PSO. Test results indicate that the 
proposed method significantly improves the ability 
of PSO of escaping from the local optimal raise and 
increases the accuracy and the convergence rate. 

2. New proposed algorithm: Pari PSO 

The Objective of developing a new algorithm was 
to reduce the number of clocks in finding the 
minimum functional value and hence making the 
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method more economic. To achieve it lot of 
numerical experiments were performed. In this 
algorithm the velocity equation has been updated as 
(Eq. 5): 

 

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) + (𝑐1 × 𝑟𝑎𝑛𝑑() × (0.35 × 𝑝𝑖
𝑏𝑒𝑠𝑡 −

𝑝𝑖(𝑘))) + (𝑐2 × 𝑟𝑎𝑛𝑑() × (0.65 × 𝑝𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘)))         (5) 

 
In the velocity update equation of this new PSO 

the first term represents the current velocity of the 
particle and can be thought of as a momentum term. 
The second term is proportional to the vector(0.35 ×

𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘)), is responsible for the attractor of 

particle’s current position and positive direction of 
its own best position (pbest). The third term is 

proportional to the vector (0.65 × 𝑝𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘))), 

which is responsible for the attractor of particle’s 
current position. 

The (original) process for implementing the 
global version of Pari PSO is as follows: 

 
ALGORITHM- Pari PSO  
For each particle  
Initialize particle 
END 
Do 
For each particle  
Calculate fitness value 
If the fitness value is better than its peronal best 
set current value as the new pbest 
End 
Choose the particle with the best fitness value of all as gbest 
For each particle  
Calculate particle velocity according Equation 

𝑣𝑖(𝑘 + 1) = 𝑤 × 𝑣𝑖(𝑘) + (𝑐1 × 𝑟𝑎𝑛𝑑() × (0.35 × 𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘))) +

(𝑐2 × 𝑟𝑎𝑛𝑑() × (0.65 × 𝑝𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑖(𝑘))) 

Update particle position according equation  
𝑝𝑖(𝑘 + 1) = 𝑝𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)  
 End While maximum iterations or minimum error criteria is 
not attained 
END ALGORITHM 

2.1. Remark  

The name of this algorithm has been coined by 
the first author in the lingering memories of his 
beloved daughter Late Ms. Pari.  

2.2. SPSO parameters settings  

The parameter in the SPSO given in the literature 
is: 

 
1. The number of particles should be low, around 20-

40 
2. The speed a particle can move (maximum change 

in its position per iteration) should be bounded, 
such as to a percentage of the size of the domain. 

3. A local bias (local neighborhood) factor can be 
introduced where neighbors are determined based 
on Euclidean distance between particle positions. 

4. Particles may leave the boundary of the problem 
space and may be penalized, be reflected back into 

the domain or biased to return back toward a 
position in the problem domain. Alternatively, a 
wrapping strategy may be used at the edge of the 
domain creating a loop, torrid or related 
geometrical structures at the chosen 
dimensionality. 

5. An inertia or momentum coefficient can be 
introduced to limit the change in velocity (Weights 
0.4 to 0.9 and momentum coefficient 1.4 to 2.0). 

6. The maximum number of function evaluations is 
fixed to be 30,000.  

7. The dynamic range for each element of a particle is 
defined as (-100,100), that is, the particle cannot 
move out of this range in each dim and thus Xmax 
= 100. 

8. Maximum Error = 0.1 to 0.9 
9. In the proposed method we have to test the same 

parameters as in SPSO 

2.3. The test problems  

Every new techniques of PSO has to be tested on 
some benchmark problems. Keeping this in view the 
proposed algorithms has been tested on 28 
benchmark problems (15 Scalable and 13 Non- 
Scalable Problems). All these problems vary in 
difficulty levels and problem size. The performance 
of SPSO, MPSO and Pari PSO is evaluated on these 
benchmarks problems. These problems have been 
divided in two kinds of problem sets. 

Problem Set I: Scalable Problems: - Those 
problems in which the dimension of the problems 
can be increased / decreased at will. In general, the 
complexity of the problem increases as the problem 
size is increased.  

Problem Set II: Non-Scalable Problems- In which 
the problem size is fixed, but the problems have 
many local as well as global optima. 

2.4. Analysis 

In SPSO, MPSO and newly proposed algorithm 
Pari PSO the balance between the local and global 
exploration abilities is mainly controlled by the 
inertia weight. The experimental results have been 
performed to illustrate this. By setting the maximum 
velocity to be two, it was found that SPSO, MPSO and 
Pari PSO with an inertia weight in the range [0.4, 0.9] 
on average has a better and bad performance; that is, 
it has a large chance to find the global optimum 
within a reasonable number of iterations. A time 
decreasing inertia weight is found to be better than a 
fixed inertia weight 0.8 and acceleration coefficients 
1.6. 

A number of criteria are used to evaluate the 
performance of SPSO, MPSO with Pari PSO. The 
percentage of success is used to evaluate the 
reliability. The average number of function 
evaluations of successful runs and the average 
computational time of the successful runs, are used 
to evaluate the cost.  

For Problem Set-I. The quality of the solution 
obtained is measured by the minimum, mean and 
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standard deviation of the objective function values 
out of thirty runs. This is shown in Table 2, 8 and 14. 
The corresponding information for Problem Set-II is 
shown in Tables 5, 11 and 17 respectively. Similarly 
we obtained the time decreasing performance of the 
SPSO, MPSO and Pari PSO in Table 3, 6, 9, 12, 15, 18 
respectively. 

We are testing the new approach Pari Particle 
Swarm Optimization Algorithm on the parameter 
setting: inertia weight 0.6 and 0.7, swarm size 30 
dim, function evaluation 30,000, acceptable error 0.9 
and acceleration coefficient 1.4 and 1.5. On this 
parameter setting the results obtained by the new 
approach has been listed in the Tables 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10 and 11. These results have also been 
illustrated through Figs. 1 to 6. The results indicate 
that the new approach does not yield the global 
optimal point in all 100% cases.  

Table 1: Parameter setting for Pari PSO 
Inertia Weight 0.7 

Confidence 1.5 
Dim 30 

Swarm Size 30 
Maximum Evaluation 30,000 

Acceptable Error 0.9 

 
Finally, we are testing the new approach on the 

parameter setting: inertia weight 0.8, swarm size 30 
dim, function evaluations 30,000, acceptable error 
0.9 and acceleration coefficient 1.6. For this 
parameter setting results indicate that Pari PSO is 
most efficient for finding the global optimal point as 
comparison to SPSO and MPSO in the terms of cases 
in the terms of efficiency, time computation, 
reliability, accuracy and stability many several types 
of benchmarks problems. 

 
Table 2: Comparison of minimum objective function value obtained in 50 runs by SPSO, MPSO and Pari PSO for 15 Scalable 

problems set-I 
Problem 

No. 
Minimum Function Value Mean Function Value Standard Deviation Rate of Success 

SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO 
1 0.333237 0.116912 0.104504 0.466472 0.366841 0.335568 0.034995 0.100515 0.096336 100.00% 100.00% 100.00% 
2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.00% 0.00% 0.00% 
3 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.00% 0.00% 0.00% 

4 
67.46491

9 
0.074771 0.026964 131.9798 0.335697 0.300736 

32.34162
2 

0.116899 0.126024 0.00% 100.00% 100.00% 

5 0.388931 0.080987 0.090896 0.475017 0.331975 0.323439 0.027427 0.105874 0.115487 100.00% 100.00% 100.00% 
6 0.000458 0.000201 0.000000 0.136791 0.173732 0.146715 0.132152 0.153407 0.150484 100.00% 100.00% 100.00% 
7 0.000007 0.000274 0.000033 0.139596 0.133538 0.137262 0.131760 0.144473 0.146399 100.00% 100.00% 100.00% 
8 0.000026 0.000000 0.000003 0.005763 0.004310 0.003206 0.010851 0.005661 0.004902 100.00% 100.00% 100.00% 
9 0.000008 0.000001 0.000080 0.065178 0.106307 0.075560 0.097276 0.135533 0.103360 100.00% 100.00% 100.00% 

10 0.002075 0.000599 0.009711 0.144592 0.181111 0.153810 0.115705 0.138862 0.115868 100.00% 100.00% 100.00% 
11 0.346877 0.024249 0.000355 0.454562 0.254027 0.196083 0.038501 0.135333 0.131251 100.00% 100.00% 100.00% 
12 0.008442 0.003052 0.006482 0.223617 0.200235 0.248183 0.150935 0.144104 0.139184 100.00% 100.00% 100.00% 
13 0.003015 0.164147 0.363567 0.227848 8.539143 36.74694 0.165879 7.736604 47.32171 100.00% 6.00% 2.00% 
14 0.001623 0.000557 0.000497 0.105389 0.115323 0.103464 0.095023 0.106661 0.088842 100.00% 100.00% 100.00% 
15 0.000009 0.000000 0.000002 0.003656 0.003064 0.002487 0.005729 0.003789 0.004110 100.00% 100.00% 100.00% 

 
3. Experimental results and discussion 

The Performance of the proposed PSO model is 
tested on a number of analytical benchmark 
functions which have been extensively used to 
compare PSO-type meta-heuristic algorithms in the 
literature. This paper utilizes the benchmark 
function set, shown in Set-I and Set-II.  

 
Table 3: Testing of newly proposed approach, Pari PSO in 

terms of Time 
Sr. No Number of Clocks 

1 SPSO MPSO Pari PSO 
2 4258 546 530 
3 4867 4867 4820 
4 7846 8049 7924 
5 7129 811 826 
6 1903 405 390 
7 296 296 296 
8 265 280 265 
9 280 280 296 

10 297 296 296 
11 234 249 280 
12 2074 452 468 
13 296 327 312 
14 577 5319 5476 
15 280 312 312 
16 296 296 296 

 

The new algorithm was tested on a set of 28 
benchmark Problems (15 Scalable and 13 Non-
Scalable). The scalable and non-scalable problems 
were chosen as the test problems. The Standard 
Particle Swarm Optimization implementation was 
written in C and compiled using the Borland C++ 
Version 4.5 compiler. For the purpose of comparison, 
all the simulation use the parameter setting of the 

SPSO implementation except the inertia weight w , 
acceleration coefficient, swarm size and maximum 
velocity allowed.  The swarm size (number of 
particles) varies from 20 to 30, inertia weight from 
0.4 to 0.9 and acceleration coefficient between 1.4 
and 2.0. The dynamic range for each element of a 
particle has been defined as (-100, 100), i.e., the 
particle cannot move out of this range in each dim 
and thus Xmax = 100. The maximum number of 
iterations allowed is 30,000. If the SPSO, Mean PSO 
and PariPSO implementation cannot find an 
acceptable solution within 30,000 iterations, it is 
ruled that it fails to find the global optimum in this 
run. 

A number of criteria have been used to evaluate 
the performance of SPSO, Mean PSO and PariPSO. 
The percentage of success is used to evaluate the 
reliability. The average number of function 
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evaluations of successful runs and the average 
computational time of the successful runs, are used 
to evaluate the cost. For problem SET-I, the 
conclusion has been drawn on the basis of the 

minimum mean, success rate and standard deviation 
of the objective function values in fifty runs. The 
corresponding information for problem SET-II has 
been drawn on similar basis. 

 
Table 4: Comparison of minimum objective function value obtained in 50 runs by SPSO, MPSO and Pari PSO for 13 Non- 

Scalable Problems Set-II 
Problem 

No. 
Minimum Function Value Mean Function Value Standard Deviation Rate of Success 

SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO 
1 0.500000 0.500000 0.500000 0.500000 0.500000 0.500001 0.000000 0.000000 0.000002 100.00% 0.00% 0.00% 
2 0.004908 0.013329 0.000544 0.212664 0.167218 0.176938 0.150964 0.133254 0.138689 100.00% 100.00% 100.00% 
3 0.001029 0.004946 0.009126 0.249016 0.240726 0.212053 0.159486 0.140210 0.152504 100.00% 100.00% 100.00% 
4 0.000533 0.031645 0.001223 0.236961 0.251522 0.265394 0.137953 0.140993 0.145386 100.00% 100.00% 100.00% 
5 0.002502 0.001426 0.000817 0.178632 0.208039 0.242072 0.143712 0.138999 0.149717 100.00% 100.00% 100.00% 
6 73046.59 73046.59 73046.59 73046.59 73046.59 73046.59 0.000000 0.000000 0.000000 0.00% 0.00% 0.00% 
7 13.4467 27.3725 27.9998 46.7363 28.0679 28.306709 33.1909 0.214735 0.150201 0.00% 0.00% 0.00% 
8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00% 0.00% 0.00% 
9 1.380465 1.380465 1.380465 1.380465 1.380465 1.380465 0.000000 0.000000 0.000000 0.00% 0.00% 0.00% 

10 0.067997 0.043758 0.088462 0.583033 0.459506 0.388234 0.215576 0.219519 0.193844 100.00% 100.00% 100.00% 
11 0.003378 0.007090 0.002439 0.263803 0.210116 0.278202 0.207517 0.176338 0.214453 100.00% 100.00% 100.00% 
12 0.005549 0.008986 0.018278 0.369263 0.316727 0.421738 0.270722 0.230383 0.277308 100.00% 100.00% 100.00% 
13 0.002655 0.006073 0.000060 0.319323 0.263009 0.338979 0.229666 0.181617 0.176046 100.00% 100.00% 100.00% 

 

The new approach has been tested on different 
types of parameters. When we are testing the new 
approach for swarm size 30 dim, function evaluation 
30,000, inertia weight 0.6 and 0.7, acceptable error 
0.9 and acceleration coefficient 1.4 and 1.5, new 
approach PariPSO, SPSO and MPSO are failed to find 
the global optimal result on several scalable and 
non-scalable problems. 

For the parameter setting swarm size 30 dim, 
function evaluation 30,000, inertia weight 0.8, 
acceptable error 0.9 and acceleration coefficient 1.6 
the proposed algorithm has been tested on the given 
benchmark problems. With the help of this 
parameter setting we have obtained the optimal 
solution in most of the cases. These results have 
been shown in the Tables 14, 15, 17 and 18. 

Table 5: Testing of newly proposed approach, Pari PSO in 
terms of time 

Sr. No 
Number of Clocks 

SPSO MPSO Pari PSO 
1 795 5413 5413 
2 343 358 296 
3 324 264 308 
4 333 362 363 
5 341 359 286 
6 29144 27610 27971 
7 5415 5598 5558 
8 4898 4976 4976 
9 17284 16707 7175 

10 468 312 343 
11 265 296 296 
12 296 280 296 
13 280 296 234 

 

 
Table 6: Comparison of minimum objective function value obtained in 50 runs by SPSO, MPSO and Pari PSO for 15 scalable 

problems set-I 
Problem 

No. 
Minimum Function Value Mean Function Value Standard Deviation Rate of Success 

SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO 
1 0.619676 0.234792 0.246675 0.922738 0.690200 0.694141 0.204204 0.149918 0.152567 70.00% 100.00% 100.00% 
2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.00% 0.00% 0.00% 
3 0.094588 0.025141 0.036357 0.148249 0.055662 0.062988 0.022320 0.011667 0.012798 100.00% 100.00% 100.00% 

4 17.929427 1.000000 1.000000 
26.94842

9 
1.000000 1.000000 2.620415 0.000000 0.000000 0.00% 0.00% 0.00% 

5 0.543236 0.166967 0.179300 0.803042 0.637185 0.562523 0.091277 0.189205 0.204035 100.00% 100.00% 100.00% 
6 0.000001 0.000036 0.000006 0.279604 0.235347 0.281010 0.273092 0.244694 0.262177 100.00% 100.00% 100.00% 
7 0.000040 0.000080 0.000094 0.227999 0.267945 0.250953 0.254545 0.273861 0.268882 100.00% 100.00% 100.00% 
8 0.000000 0.000001 0.000003 0.005115 0.002858 0.004850 0.007175 0.005120 0.008650 100.00% 100.00% 100.00% 
9 0.000001 0.000039 0.000085 0.148325 0.082883 0.119724 0.208067 0.148494 0.174187 100.00% 100.00% 100.00% 

10 0.000732 0.004534 0.006678 0.212338 0.159204 0.208941 0.181537 0.135146 0.174190 100.00% 100.00% 100.00% 
11 0.428080 0.059734 0.004511 0.788042 0.389512 0.446050 0.108482 0.236531 0.275453 100.00% 100.00% 100.00% 
12 0.008529 0.000828 0.013052 0.431102 0.396643 0.398125 0.244669 0.264548 0.251589 100.00% 100.00% 100.00% 

13 0.015651 0.030990 0.074653 0.438592 5.363785 
104.0030

60 
0.260853 4.798968 

81.70420
0 

100.00% 16.00% 4.00% 

14 0.00162 0.001080 0.000826 0.128907 0.129157 0.096919 0.121869 0.124008 0.088872 100.00% 100.00% 100.00% 
15 0.000000 0.000001 0.000002 0.003158 0.002099 0.003639 0.004651 0.003652 0.005484 100.00% 100.00% 100.00% 

 

The results of Table 14 indicate that the new 
approach has solved thirteen scalable problems with 
100% success and it also outperforms SPSO and 
MPSO in all these problems.  All approaches has been 
failed to find global optimal solution for one scalable 
problem. In the fifteenth problem the performance of 
PariPSO is better to SPSO not to MPSO. 

Moreover the results of Table 15 shows that 
PariPSO is finding the optimal point in less number 
of clocks on thirteen scalable problems as 
comparison to SPSO and MPSO. Thus it takes less 
CPU time and hence becomes most economic 
amongst these methods. Only in one problem it takes 
less time to SPSO but more time in comparison to 
MPSO. 



Singh et al/ International Journal of Advanced and Applied Sciences, 3(12) 2016, Pages: 96-105 

101 
 

The results of Table 17 show that the new 
approach has solved eight non scalable problems 
with 100% success and outperformed SPSO and 
MPSO. All these approaches failed to solve two non-
scalable problems successfully. In the remaining 
three problems the proposed approach is better to 
SPSO but not to MPSO. 

Lastly, the results of Table 18 shows that three 
non-scalable problems has been solved successfully 
using PariPSO in less number of clocks compared to 
SPSO and MPSO. For five non scalable problems the 
new approach is finding the global optimal point in 
less number of clocks as comparison to SPSO but not 
to MPSO. In two problems PariPSO proved to be 
better than MPSO but worse than SPSO. In the 
remaining two all the algorithms failed to find the 
optimal solution. 

Table 7: Testing of newly proposed approach Pari PSO in 
terms of time 

Sr. No 
Number of Clocks 

SPSO MPSO Pari PSO 
1 3340 458 427 
2 4984 5005 5074 
3 202 250 229 
4 7306 7470 7422 
5 769 289 320 
6 220 219 228 
7 272 285 297 
8 284 291 247 
9 325 257 249 

10 270 303 308 
11 964 356 357 
12 282 277 287 
13 474 5184 5505 
14 317 277 279 
15 310 297 299 

 

 
Table 8: Comparison of minimum objective function value obtained in 50 runs by SPSO, MPSO and Pari PSO for 13 Non- 

scalable problems Set-II 

Problem No. 
Minimum Function Value Mean Function Value Standard Deviation Rate of Success 

SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO 
1 0.500003 0.500003 0.500003 0.526973 0.582082 0.542196 0.047372 0.097857 0.054360 100.00% 100.00% 100.00% 
2 0.002786 0.002983 0.001972 0.308700 0.285012 0.306678 0.240717 0.238237 0.249587 100.00% 100.00% 100.00% 
3 0.007013 0.001252 0.009322 0.329615 0.306953 0.355605 0.250265 0.240706 0.269558 100.00% 100.00% 100.00% 
4 0.021654 0.002922 0.002611 0.470666 0.352727 0.379539 0.256132 0.237292 0.261926 100.00% 100.00% 100.00% 
5 0.003533 0.001515 0.001515 0.349886 0.411309 0.354547 0.238325 0.267259 0.220808 100.00% 100.00% 100.00% 
6 73046.59 73046.59 73046.59 73046.59 73046.59 73046.59 0.000000 0.000000 0.000000 0.00% 0.00% 0.00% 

7 3.575332 28.10045 28.5865 
26.79365

3 
28.57612 

28.75951
3 

13.62731
3 

0.326619 0.069283 0.00% 0.00% 0.00% 

8 0.010057 0.032551 0.007865 0.491922 0.525217 0.545747 0.281136 0.226387 0.240063 100.00% 100.00% 100.00% 
9 0.480465 0.480466 0.480479 0.507009 0.492759 0.494226 0.030349 0.016595 0.020826 100.00% 100.00% 100.00% 

10 0.055860 0.022383 0.021841 0.510907 0.395098 0.405757 0.260473 0.218544 0.238010 100.00% 100.00% 100.00% 
11 0.007338 0.005380 0.007508 0.203349 0.151939 0.177446 0.170201 0.121302 0.168608 100.00% 100.00% 100.00% 
12 0.015703 0.001915 0.000381 0.327649 0.304038 0.311233 0.237534 0.228422 0.229011 100.00% 100.00% 100.00% 
13 0.006582 0.001053 0.000042 0.258751 0.214439 0.278492 0.258751 0.152282 0.177249 100.00% 100.00% 100.00% 

 
Table 9: Testing of Newly Proposed Approach Pari PSO in 

terms of Time 

Sr. No 
Number of Clocks 

SPSO MPSO Pari PSO 
1 265 218 202 
2 218 343 203 
3 234 202 234 
4 202 202 234 
5 249 234 202 
6 28719 27440 27643 
7 5163 5475 5444 
8 265 234 234 
9 312 265 312 

10 358 343 343 
11 280 296 343 
12 234 296 265 
13 265 280 265 

 

 
Fig. 1: Comparison of results obtained SPSO , MPSO and 

Pari PSO for the set of 15 scalable problems SET-I- Table 2 

 

 
Fig. 2: Comparing of results obtained SPSO, MPSO and Pari 
PSO for the set of 13 Non-scalable problems SET-I- Table 4 

 
On the basis of results obtained authors conclude 

that PariPSO is most economic, efficient and faster in 
comparison to SPSO and MPSO for a defined set of 
parameters. 

4. Conclusion 

A new version of the Particle Swarm 
Optimization (PSO) has been introduced in this 
paper. The method will be known as Pari Particle 
Swarm Optimization (Pari PSO).  

 
 

SPSO MPSO Pari PSO

SPSO MPSO Pari PSO
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Table 10: Comparison of minimum objective function value obtained in 50 runs by SPSO, MPSO and Pari PSO for 15 Non- 
scalable problems Set-I 

Problem 
No. 

Minimum Function Value Mean Function Value Standard Deviation Rate of Success 
SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO 

1 6.216648 0.354164 0.323747 8.453022 0.717572 0.698956 1.261263 0.135261 0.151211 0.00% 100.00% 100.00% 
2 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.000000 0.000000 0.000000 100.00% 100.00% 100.00% 
3 1.000305 1.000000 1.000000 1.002817 1.000000 1.000000 0.004139 0.000000 0.000000 0.00% 0.00% 0.00% 
4 5654.218 0.059967 0.037287 18951.95 0.546463 0.533749 9417.662 0.214455 0.215857 0.00% 100.00% 100.00% 
5 0.739977 0.223565 0.133032 1.195796 0.669006 0.632472 0.613865 0.157349 0.194815 54.00% 100.00% 100.00% 
6 0.000089 0.000672 0.000007 0.301340 0.243549 0.281184 0.262897 0.249320 0.263720 100.00% 100.00% 100.00% 
7 0.000029 0.000046 0.000180 0.247606 0.268767 0.258546 0.252291 0.252866 0.257292 100.00% 100.00% 100.00% 
8 0.000004 0.000007 0.000001 0.005216 0.009008 0.007259 0.007772 0.021359 0.018882 100.00% 100.00% 100.00% 
9 0.000111 0.000006 0.000064 0.151264 0.118851 0.103578 0.225395 0.190112 0.141065 100.00% 100.00% 100.00% 

10 0.007634 0.001831 0.001831 0.216753 0.184000 0.192249 0.180577 0.169350 0.175228 100.00% 100.00% 100.00% 
11 15.644990 0.031034 0.002714 390.1446 0.451726 0.384586 1391.722 0.251974 0.261574 0.00% 100.00% 100.00% 
12 0.038170 0.024035 0.001911 0.434670 0.410699 0.360954 0.253007 0.248216 0.241765 100.00% 100.00% 100.00% 
13 0.031976 0.217234 0.020919 0.446246 11.73805 11.83678 0.252932 11.97660 12.13561 100.00% 4.00% 8.00% 
14 0.001623 0.001623 0.001623 0.114224 0.089594 0.097428 0.099862 0.081496 0.093799 100.00% 100.00% 100.00% 
15 0.000003 0.000005 0.000001 0.004755 0.007066 0.002943 0.007811 0.018895 0.003906 100.00% 100.00% 100.00% 

 
 
 

Table 11: Testing of newly proposed approach, Pari PSO 
in terms of time 

Sr. No 
Number of Clocks 

SPSO MPSO Pari PSO 
1 7472 998 889 
2 1076 982 951 
3 7893 8018 8002 
4 7238 2480 1778 
5 6723 546 561 
6 312 296 296 
7 202 265 202 
8 218 202 187 
9 280 249 202 

10 202 405 202 
11 4758 592 546 
12 202 390 202 
13 764 5288 5194 
14 203 187 202 
15 421 202 187 

 

 
 
 
 

 
Fig. 3: Comparison of results obtained using SPSO, MPSO 

and Pari PSO for the set of 15 scalable problems SET-I- 
Table 6 

 

 
 

 
Fig. 4: Comparison of results obtained using SPSO, MPSO 

and Pari PSO for the set of 13 Non-scalable problems SET-
I- Table 8 

 
 
 

 
Fig. 5: Comparison of results obtained using SPSO, MPSO 

and Pari PSO for the set of 15 Scalable Problems SET-I- 
Table 10 

 
 
 
 
 
 
 
 

SPSO MPSO Pari PSO

SPSO MPSO Pari PSO

SPSO MPSO Pari PSO
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Table 12: Comparison of Minimum Objective function value obtained in 50 runs by SPSO, MPSO and Pari PSO for 13 Non- 
Scalable Problems Set-II 

Problem 
No. 

Minimum Function Value Mean Function Value Standard Deviation Rate of Success 
SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO 

1 0.500169 0.500044 0.500001 0.559173 0.567709 0.542520 0.097106 0.085016 0.060343 100.00% 100.00% 100.00% 
2 0.009310 0.012805 0.000305 0.400386 0.385434 0.320214 0.272983 0.260114 0.279873 100.00% 100.00% 100.00% 
3 0.009239 0.009525 0.006395 0.367867 0.323189 0.343069 0.244524 0.244053 0.229518 100.00% 100.00% 100.00% 
4 0.005260 0.004538 0.032348 0.470888 0.403137 0.447511 0.253210 0.267541 0.271799 100.00% 100.00% 100.00% 
5 0.023872 0.000531 0.003430 0.345565 0.356886 0.373028 0.225290 0.228851 0.282113 100.00% 100.00% 100.00% 

6 73046.59 
73046.59

6 
73046.59

6 
73046.59 73046.596 

73046.59
6 

0.000000 0.000000 0.000000 0.00% 0.00% 0.00% 

7 111.2349 27.466171 27.866916 601.5607 28.043699 28.267751 468.6419 0.191601 0.164995 0.00% 0.00% 0.00% 
8 0.010858 0.010057 0.010057 0.481820 0.473086 0.514414 0.268329 0.256105 0.241689 100.00% 100.00% 100.00% 
9 0.480474 0.480478 0.480566 0.508201 0.497816 0.501146 0.029480 0.023301 0.024134 100.00% 100.00% 100.00% 

10 0.114681 0.002013 0.002462 0.618387 0.449032 0.493212 0.203637 0.268925 0.268903 100.00% 100.00% 100.00% 
11 0.000632 0.001778 0.009317 0.281051 0.209253 0.182759 0.244625 0.220955 0.182759 100.00% 100.00% 100.00% 
12 0.006776 0.028729 0.002534 0.371321 0.302112 0.374412 0.238325 0.211787 0.238193 100.00% 100.00% 100.00% 
13 0.012970 0.001342 0.006773 0.277142 0.286922 0.328632 0.172771 0.206169 0.183676 100.00% 100.00% 100.00% 

 
Table 13: Testing of newly proposed approach, Pari PSO in terms of time 

Sr. No 
Number of Clocks 

SPSO MPSO Pari PSO 
1 287 312 249 
2 327 250 296 
3 325 292 347 
4 321 307 332 
5 273 223 313 
6 28969 28563 28657 
7 5350 5506 5475 
8 312 327 296 
9 297 280 296 

10 514 343 374 
11 218 296 265 
12 265 280 296 
13 280 312 327 
14 287 312 249 
15 327 250 296 

 
Table 14: Comparison of Minimum Objective function value obtained in 50 runs by SPSO, MPSO and Pari PSO for 15 Non- 

Scalable Problems Set-I 
Problem 

No. 
Minimum Function Value Mean Function Value Standard Deviation Rate of Success 

 SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO 
1 6.216648 0.354164 0.323747 8.453022 0.717572 0.698956 1.261263 0.135261 0.151211 0.00% 100.00% 100.00% 
2 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.000000 0.000000 0.000000 100.00% 100.00% 100.00% 
3 1.000305 1.000000 1.000000 1.002817 1.000000 1.000000 0.004139 0.000000 0.000000 0.00% 0.00% 0.00% 
4 5654.218 0.059967 0.037287 18951.95 0.546463 0.533749 9417.662 0.214455 0.215857 0.00% 100.00% 100.00% 
5 0.739977 0.223565 0.133032 1.195796 0.669006 0.632472 0.613865 0.157349 0.194815 54.00% 100.00% 100.00% 
6 0.000089 0.000672 0.000007 0.301340 0.243549 0.281184 0.262897 0.249320 0.263720 100.00% 100.00% 100.00% 
7 0.000029 0.000046 0.000180 0.247606 0.268767 0.258546 0.252291 0.252866 0.257292 100.00% 100.00% 100.00% 
8 0.000004 0.000007 0.000001 0.005216 0.009008 0.007259 0.007772 0.021359 0.018882 100.00% 100.00% 100.00% 
9 0.000111 0.000006 0.000064 0.151264 0.118851 0.103578 0.225395 0.190112 0.141065 100.00% 100.00% 100.00% 

10 0.007634 0.001831 0.001831 0.216753 0.184000 0.192249 0.180577 0.169350 0.175228 100.00% 100.00% 100.00% 
11 15.644990 0.031034 0.002714 390.1446 0.451726 0.384586 1391.722 0.251974 0.261574 0.00% 100.00% 100.00% 
12 0.038170 0.024035 0.001911 0.434670 0.410699 0.360954 0.253007 0.248216 0.241765 100.00% 100.00% 100.00% 
13 0.031976 0.217234 0.020919 0.446246 11.73805 11.83678 0.252932 11.97660 12.13561 100.00% 4.00% 8.00% 
14 0.001623 0.001623 0.001623 0.114224 0.089594 0.097428 0.099862 0.081496 0.093799 100.00% 100.00% 100.00% 
15 0.000003 0.000005 0.000001 0.004755 0.007066 0.002943 0.007811 0.018895 0.003906 100.00% 100.00% 100.00% 

 
Table 15: Testing of Newly Proposed Approach, Pari PSO 

in terms of Time 
Sr. No Number of Clocks 

 SPSO MPSO Pari PSO 
1 7472 998 889 
2 1076 982 951 
3 7893 8018 8002 
4 7238 2480 1778 
5 6723 546 561 
6 312 296 296 
7 202 265 202 
8 218 202 187 
9 280 249 202 

10 202 405 202 
11 4758 592 546 
12 202 390 202 
13 764 5288 5194 
14 203 187 202 
15 421 202 187 

 
Fig. 6: Comparison of results obtained using SPSO, MPSO 

and Pari PSO for the set of 13 Non-Scalable Problems SET-
I- Table 12 

SPSO MPSO Pari PSO
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Table 16: Parameter Setting for Pari PSO 
Inertia Weight 0.8 

Confidence 1.6 
Dim 30 

Swarm Size 30 
Maximum Evaluation 30,000 

Acceptable Error 0.9 

 
The performance of this approach has been 

compared with SPSO and MPSO in the terms of 

efficiency, time computation, reliability, accuracy 
and stability and number of clocks. 

The test results shows that the proposed 
approach significantly improves the ability of PSO to 
find global optimal solution and also increases the 
accuracy or convergence rate. 

 

 
Table 17: Comparison of Minimum Objective function value obtained in 50 runs by SPSO, MPSO and Pari PSO for 13 Non- 

Scalable Problems Set-II 
Proble
m No. 

Minimum Function Value Mean Function Value Standard Deviation Rate of Success 

 SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO SPSO MPSO Pari PSO 
1 0.500169 0.500044 0.500001 0.559173 0.567709 0.542520 0.097106 0.085016 0.060343 100.00% 100.00% 100.00% 
2 0.009310 0.012805 0.000305 0.400386 0.385434 0.320214 0.272983 0.260114 0.279873 100.00% 100.00% 100.00% 
3 0.009239 0.009525 0.006395 0.367867 0.323189 0.343069 0.244524 0.244053 0.229518 100.00% 100.00% 100.00% 
4 0.005260 0.004538 0.032348 0.470888 0.403137 0.447511 0.253210 0.267541 0.271799 100.00% 100.00% 100.00% 
5 0.023872 0.000531 0.003430 0.345565 0.356886 0.373028 0.225290 0.228851 0.282113 100.00% 100.00% 100.00% 

6 73046.59 
73046.59

6 
73046.59

6 
73046.59 73046.596 

73046.59
6 

0.000000 0.000000 0.000000 0.00% 0.00% 0.00% 

7 111.2349 
27.46617

1 
27.86691

6 
601.5607 28.043699 

28.26775
1 

468.6419 0.191601 0.164995 0.00% 0.00% 0.00% 

8 0.010858 0.010057 0.010057 0.481820 0.473086 0.514414 0.268329 0.256105 0.241689 100.00% 100.00% 100.00% 
9 0.480474 0.480478 0.480566 0.508201 0.497816 0.501146 0.029480 0.023301 0.024134 100.00% 100.00% 100.00% 
10 0.114681 0.002013 0.002462 0.618387 0.449032 0.493212 0.203637 0.268925 0.268903 100.00% 100.00% 100.00% 
11 0.000632 0.001778 0.009317 0.281051 0.209253 0.182759 0.244625 0.220955 0.182759 100.00% 100.00% 100.00% 
12 0.006776 0.028729 0.002534 0.371321 0.302112 0.374412 0.238325 0.211787 0.238193 100.00% 100.00% 100.00% 

13 0.012970 0.001342 0.006773 0.277142 
0.286922 

 
0.328632 0.172771 0.206169 0.183676 100.00% 100.00% 100.00% 

 
Table 18: Testing of Newly Proposed Approach, Pari PSO 

in terms of Time 

Sr. No Number of Clocks 

 SPSO MPSO Pari PSO 
1 287 312 249 
2 327 250 296 
3 325 292 347 
4 321 307 332 
5 273 223 313 
6 28969 28563 28657 
7 5350 5506 5475 
8 312 327 296 
9 297 280 296 
10 514 343 374 
11 218 296 265 
12 265 280 296 
13 280 312 327 
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